7
Acknowledgments: We would like to thank the USC Bridge Undergraduate Science (BUGS) Program for
funding this work as part of a summer research project. Additionally, we would like to acknowledge the role of
generative AI, ChatGPT particularly, in code development and troubleshooting.
References
1. Busschots, S., O’Toole, S., O’Leary, J. J., & Stordal, B. (2015). Non-invasive and non-destructive
measurements of confluence in cultured adherent cell lines. MethodsX, 2, 8-13.
https://doi.org/10.1016/j.mex.2014.11.002
2. Lobo, V., Shcherbinina, E., Westholm, J.O. et al. Integrative transcriptomic and proteomic profiling of the
effects of cell confluency on gene expression. Sci Data 11, 617 (2024). https://doi.org/10.1038/s41597-024-
03465-z
3. Hur, S. S., del Álamo, J. C., Park, J. S., & Chien, S. (2012). Roles of cell confluency and fluid shear in 3-
dimensional intracellular forces in endothelial cells. Proceedings of the National Academy of Sciences, 109(28),
11110-11115. https://doi.org/10.1073/pnas.1207326109
4. Shamhan, M., Idris, A. S., Toha, S. F., Daud, M. F., Idris, I. M., & Malik, H. (2023). An automated approach
for fibroblast cell confluency characterisation and sample handling using AIoT for bio-research and bio-
manufacturing. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2240087
5. CellProfiler. (n.d.). Retrieved from https://cellprofiler.org/
6. Malik H, Idris AS, Toha SF, Mohd Idris I, Daud MF, Azmi NL. 2023. A review of open-source image
analysis tools for mammalian cell culture: algorithms, features and implementations. PeerJ Computer Science
9:e1364 https://doi.org/10.7717/peerj-cs.1364
7. Logos Biosystems. (2020). Monitoring confluency of adherent cells in multi-well plates using the
CELENA® X High Content Imaging System. Retrieved from https://logosbio.com/
8. Farrell, C. J., Cicalese, S. M., Davis, H. B., Dogdas, B., Shah, T., Culp, T., & Hoang, V. M. (2016). Cell
confluency analysis on microcarriers by micro-flow imaging. Cytotechnology, 68(6), 2469-2478.
https://doi.org/10.1007/s10616-016-9967-0
9. G., M., & Hidalgo, A. (2011). Image Processing Methods for Automatic Cell Counting In Vivo or In Situ
Using 3D Confocal Microscopy. InTech. doi: 10.5772/23147
10.
0
Chiu, C.-H., Leu, J.-D., Lin, T.-T., Su, P.-H., Li, W.-C., Lee, Y.-J., & Cheng, D.-C. (2020). Systematic
quantification of cell confluence in human normal oral fibroblasts. Applied Sciences, 10(24), 9146.
https://doi.org/10.3390/app10249146
11.
1
Freshney, R. I. (2010). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications.
Wiley-Blackwell.
12. Xue, Z., Zeng, J., Li, Y., Meng, B., Gong, X., Zhao, Y., & Dai, X. (2023). Proteomics reveals that cell density
could affect the efficacy of drug treatment. Biochemistry and Biophysics Reports, 33, 101403.
https://doi.org/10.1016/j.bbrep.2022.101403
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.
Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2024 doi:10.20944/preprints202408.0786.v1